Anna Maria Bonnici
0
0
2015-11-17T07:52:00Z
2015-11-17T07:52:00Z
1
190
1084
9
2
1272
14.0
Normal
0
false
false
false
EN-US
JA
X-NONE
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:Cambria;
mso-ascii-font-family:Cambria;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Cambria;
mso-hansi-theme-font:minor-latin;}
In regions where solar energy is abundant, solar energy can play a vital role in attaining energy sustainability. Sizing solar energy systems requires the availability of solar radiation data on horizontal surface which can then be used to calculate solar radiation intensity on any tilted surface using appropriate conversion factors or formula. In many parts of the world, especially in developing countries, such data is not readily available. Many researchers have found that monthly average daily value of global solar radiation on horizontal surface can be estimated when meteorological parameters such as duration of sunshine, number of rainy days, relative humidity, etc. are available. Many empirical correlations have been developed based on this approach. The development of such a correlation has been made possible through the availability of solar and other meteorological data required for their validation. This paper presents a review on the existing empirical correlations and critically looks at the practicality of such correlations. This raises the question on the appropriateness of the past and present approaches adopted by researchers in this field. The paper also discusses various related aspects and proposes new directions for future research.Current output:Publication 1
info
prev / next
1
·